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Abstract

Energetically consistent crack face boundary conditions are formulated for cracks in electromechanical materials.
The model assumes that the energy of the solid can be computed from standard infinitesimal deformation theory and
that the opening of the crack faces creates a capacitive gap that can store electrical energy. The general derivation of
the crack face boundary conditions is carried out for non-linear but reversible constitutive behavior of both the solid
material and the space filling the gap. It is shown that a simple augmentation of the J-integral can be used to
determine the energy release rate for crack advance with these boundary conditions. The energetically consistent
boundary conditions are then applied to the Griffith crack problem in a polar linear piezoelectric solid and used to
demonstrate that the energy release rate computed near the crack tip is equivalent to the total energy release rate for
the solid-gap system as computed from global energy changes. A non-linear constitutive law is postulated for the crack
gap as a model for electrical discharge and the effects of the breakdown field on the energy release rate are ascer-
tained.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A significant body of work has appeared in the last few decades on the fracture mechanics of linear
piezoelectric materials. Thorough reviews of the literature can be found in McMeeking (1999), Zhang et al.
(2001) and Chen and Lu (2002). A point of contention among differing modeling approaches is the crack
face boundary condition for the so-called “insulating” crack problem. Herein, three approaches have re-
ceived considerable attention, (1) the impermeable crack model, (2) the permeable or “closed” crack model,
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and (3) the “exact” boundary conditions. When a cracked body is subjected to certain combinations of
mechanical and electrical loads the crack faces will open and usually some type of fluid (usually air) will fill
the void. Since the dielectric permittivity of air is much smaller than that of most piezoelectric ceramics of
technological interest, the impermeable crack model approximates the permittivity of the gap as zero. This
implies that the crack gap does not support any electric displacement, and continuity of electric dis-
placement at the crack surfaces implies that the normal component of electric displacement on the crack
surfaces must vanish. In contrast, the permeable crack model assumes that the crack does not perturb the
electrical fields directly and that both the electric potential and the normal component of electric dis-
placement are continuous across the crack faces. In this sense, the crack is treated as if it remains closed in
its undeformed configuration. Finally, the “exact” electrical boundary conditions originally proposed by
Hao and Shen (1994) attempt to account for the fact that the permittivity of the crack gap is in fact finite
and the crack can in fact be open. Hence, the electric field in the gap is approximated as the potential drop
divided by the crack opening displacement and the electric displacement in the gap is just this electric field
multiplied by the dielectric permittivity of the gap material. Each of the model types described assumes that
the crack faces are traction free.

Simply by considering the discussion of these three models for the boundary conditions it is clear that
the “exact” electrical boundary conditions are the most physically realistic. However, recently
McMeeking (2004) investigated the energy release rates for a Griffith crack using this type of crack face
boundary condition and found that there exists a discrepancy between the energy release rate as com-
puted from energy changes of the entire system, i.e. the total energy release rate, and the crack tip energy
release rate. Here it is worthwhile to discuss why such a discrepancy between the total and crack tip
energy release rates is problematic for the system under consideration. First, all parts of the system are
assumed to be conservative, i.e. there is no dissipation except for energy flux through the crack tip.
Second, the crack tip is assumed to be able to sustain a singularity in the electromechanical fields and no
model is used to represent the material separation process ahead of the crack. This is in contrast to
growing cracks in dissipative materials or models for material separation like the Dugdale-Barenblatt
model, wherein distinct far field or applied energy release rates (not equivalent to the total energy release
rate) and local crack tip energy release rates are commonly identified. In an entirely conservative system
the crack tip energy release rate can be computed either from a crack closure integral or from the J-
integral with a small contour near the crack tip. Such a calculation yields the amount of energy
“flowing” into the crack tip for an infinitesimal amount of crack advance. Next, the total energy release
rate for a conservative system is calculated by assembling the stored energy of all parts of the material
system, including any parts of the crack gap that can store energy, and the potential energy of the
loading system and then differentiating this energy with respect to crack length (care must be taken in the
interpretation of this result when there are two crack tips). Note again that the definition of the total
energy release rate used here for conservative systems is not the same as the far field or applied energy
release rate that is used when dissipation is modeled directly during crack growth. Therefore, since all
sources of energy are accounted for when computing the total energy release rate, including the energy
entering the crack gap, and since there are no other dissipative sinks for energy to flow to aside from the
crack tip, the total energy release rate must be equal to the energy release rate computed at the crack tip
within a physically consistent model for the system. Hence, a discrepancy between the total and crack tip
energy release rates in a conservative system is unsettling and casts doubt on the validity of the “exact”
electrical boundary conditions.

In this work energetically consistent boundary conditions will be derived with an electrical component
that is identical to the “exact’ electrical boundary condition plus an additional closing traction. The model
Griffith crack system will be used to demonstrate that these boundary conditions make the electrical en-
thalpy of the piezoelectric solid/crack void system stationary and that the total energy release rate is in fact
equivalent to the crack tip energy release rate.
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2. Theoretical foundations

Consider the electromechanically active solid depicted in Fig. 1. The equations governing a small
deformation, quasi-static, isothermal boundary value problem for the solid are as follows. Mechanical
equilibrium governs the stress distributions as

0jij + bi =0 and 0ji = 0jj inV (21)

ot —o)n;=t onS 2.2
el

Jt J:

Here o,; represents the Cartesian components of the Cauchy stress tensor, b; the components of the body
force per unit volume, #; the components of the surface traction, and »n; the components of the unit normal
to the surface pointing from the + side to the — side as illustrated in Fig. 1. In all cases summation is
assumed from 1 to 3 over repeated indices, and the notation ; represents partial differentiation with respect
to x;, i.e. ; = 0/0x;. Note that Eq. (2.1) neglects any electrical “Maxwell stress” terms that could potentially
give rise to a body force due to electrical effects.

Next, the components of the infinitesimal strain tensor ¢; are related to the components of the material
displacement u; as

1
&y = 5 (g + ) (2.3)

Under quasi-static conditions, the electrical field variables are governed by Gauss’ law and Maxwell’s law
that states that the electrical field must be irrotational.

Di,i =q in V (24)

(Df =D )n;=—-w on S (2.5)

E; = _d)j (2-6)
t

“+” side

n

“_» gide
Fig. 1. An electromechanically active solid of volume ¥ bounded by the surface S. The “+” and “-" sides of the surface are related to
the direction of the unit normal to the surface n as shown. The applied electromechanical loadings include specified mechanical surface
tractions ¢ and body forces b, and electrical surface free charge densities @ and body free charge densities g.
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Here, D; are the components of the electric displacement, ¢ is a body charge per unit volume, w is a surface
charge per unit area, E; are the components of the electric field, and ¢ is the electric potential.

To complete the set of equations the constitutive law for the material is required. In this work only
conservative materials will be considered. Hence, an electrical enthalpy density 4, Li and Ting (1957), can
be defined such that

h=i— ED; (2.7)
where u is the internal energy density of the material. For conservative materials

dit = 0,de;; + E;dD; (2.8)
Then, Eq. (2.8) implies that

dh = o,de;; — D,AE; (2.9)

Ultimately, the stresses and electric displacements can be derived from 4 as
Oh

= 2.10
O-j 68,7 ( )
and
Oh
Di:_aEi (2.11)

Egs. (2.1)~(2.11) represent the strong form of the governing equations for the electromechanical fields. The
weak form of the equations states that the solution to the boundary value problem renders the functional
Q(u, ¢) stationary, Suo et al. (1992), i.e.

32 =0 (2.12)
where
Q(u,¢):/th—/b,-uidVJr/qudV—/t,-uidS+/ w¢dS (2.13)
4 4 4 St So

Here the total surface S consists of a region where tractions are applied S, displacements are prescribed S,,,
free charges are applied S,, and electric potential is prescribed Sy, with S,NS =0, S, NS, =0 and
S, US; =84 US, =S. When carrying out the operations in Eq. (2.12) the variations of the applied body
forces in ¥, applied free charge density in ¥, applied tractions on S;, and applied free surface charge density
on S, are zero. Also, the variational strains and electric fields required to evaluate 64 must be compatible
with du; and 8¢ according to Eqs. (2.3) and (2.6). Finally, du; must be zero on S, and 8¢ must be zero on S,.
In the following section a model for the cracked solid and crack gap system will be described, then (2.12)
and (2.13) will be applied to derive energetically consistent boundary conditions for the crack faces.

3. Energetically consistent boundary conditions

When modeling cracks in electromechanically active materials with small deformation kinematics, a
dilemma arises when attempting to specify the boundary conditions on the crack faces. If a crack is
modeled as an ideal slit, then in the undeformed configuration of the body the crack faces are closed and the
crack should not be able to perturb the electrical fields. These considerations lead to the electrically per-
meable boundary conditions which assume that the crack is traction free but the jumps in both the electric
potential and normal component of electric displacement across the crack are zero, Parton (1976). On the
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other hand, under conditions when crack propagation is likely to occur, it is clear that the crack will
actually be open and hence the medium within the crack gap will be able to support electric field and electric
displacement. An approximate model for this situation results from the realization that the permittivity of
free space or air is usually much lower than most solids of interest. As such, this discrepancy in permittivity
is taken to the extreme and it is assumed that the permittivity of the crack gap is zero and hence the normal
component of the electric displacement on the crack faces must be zero, Deeg (1980), Pak (1992),
Sosa (1992), Suo et al. (1992) and many others. Lastly, another approximate model proposed by Hao and
Shen (1994) treats the crack gap as a finite permittivity gap such that the electrical boundary conditions on
the crack faces satisfy,

Ag
D, = koE. = — 3.1
Ko Ko Au, ( )

Here D, is the normal component of electric displacement supported by the crack gap, E. is the electric field
in the crack gap, o is the linear dielectric permittivity of the gap and this is usually identified with the
permittivity of free space 8.854 x 107'2 C/Vm. Then the electric field in the gap is computed from
the solution for the solid and is given by the drop in electric potential —A¢ across the crack divided by the
crack opening displacement Au,, where the subscript n represents the component of displacement normal to
the crack. Note that it is assumed that any electric field components within the gap parallel to the crack can
be neglected in comparison to the electric field normal to the crack. These electrical boundary conditions
along with traction free mechanical boundary conditions have been investigated by numerous authors
including Hao and Shen (1994), Sosa and Khutoryansky (1996), McMeeking (1999), Xu and Rajapakse
(2001), Gruebner et al. (2003), and McMeeking (2004) among others. Recently, McMeeking (2004) has
shown that this combination of electrical and mechanical boundary conditions leads to a discrepancy
between the total and crack tip energy release rates for a Griffith crack configuration. The boundary
conditions proposed here will repair this discrepancy.

In order to determine the consistent boundary conditions for a crack gap that is able to support electrical
fields the following procedure is performed. First, the variation of the total electrical enthalpy of a com-
bined cracked solid and crack gap system is derived. Then, a second system is proposed with the crack gap
removed, and in its place tractions and surface charge densities are applied to the crack surfaces. In order
for these two systems to be equivalent, the variations of the total electrical enthalpy of these systems must
be identical for arbitrary variations of the crack face displacement and electric potential. Applying these
identities will allow for the identification of effective tractions and surface charge densities that are applied
by the crack gap medium to the cracked body.

Consider a cracked body subjected to some set of applied electrical and mechanical loads. The crack
need not be straight or planar and can be represented as the surface S, contained within the solid. The total
electrical enthalpy of the solid-crack system can then be written as

Q(u,¢>):/hdv+/ hcAu,,dS—/bl-u,-dV—l—/qq’)dV—/t,-u,-dS—i—/ w¢dS (3.2)
Vv Se Vv Vv St S

)

Here the second term on the right hand side has been included to account for the electrical enthalpy of the
crack gap that has an electrical enthalpy density of 4. Note that it is assumed that the separation of
the crack surfaces is small such that the volume of the crack gap is given by ¥, = Au,S.. In essence, the
evaluation of this second term is carried out in the deformed configuration of the body while the remaining
terms are evaluated in the undeformed configuration. Herein lies a fundamental inconsistency with this
model that can only be properly removed with a more general large deformation analysis. However, the
assumptions associated with Eq. (3.2) are entirely consistent with the boundary conditions proposed in (3.1)
that appear extensively in the literature.
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It is assumed that the electrical enthalpy density of the crack gap 4. only depends on the electric field in
the crack gap, i.e. h. = h.(E.). It will also be assumed that the crack gap is isotropic such that the electric
displacement in the crack gap is aligned with the electric field in the gap. Such assumptions are consistent
with free space or an unpressurized fluid filling the gap. Then the electric displacement within the crack gap
is given as

dh,

D, =
dE.

(3.3)

Again, it is important to note that both E; and D, are assumed to be normal to the crack plane at any given
point on the crack surface. Next consider the variation of the total electrical enthalpy.

oh oh dh,
vV Se 14 Vv

68” aE, dEC
- / £;0u;dS + / wdpdS (3.4)
Sl Sw
Using the fact that
A¢
E.= ~Au, (3.5)
OE. can be shown to be
1 A
OE. = — SAP + dAu, 3.6
B, 7 (Au,)’ G0
Then, by applying (3.3) and (3.5) the second term of Eq. (3.4) can be written as
/ (Au,,%SEC + hCSAun>dS = / [D:SAD + (he + D.E.)dAu,|dS (3.7)
Se c Se

Recall that this term represents the variation of the contribution to the total electrical enthalpy from
the crack. This term consists of an electrical contribution associated with the electric field acting through the
crack gap plus a mechanical contribution arising from the fact that the stored electrical energy within the
crack gap increases as the volume of the gap increases. Hence, there is an increase in energy of the system
associated with increasing crack opening displacement, and the work conjugate force for this configurational
change is equivalent to the internal energy density of the crack gap, i.e. h. + E.D. = ui.. For reasons that will
become clear, this work conjugate force will be renamed o, or the effective stress within the crack gap. Such
stresses that occur due to displacements and electrical effects are common in more general studies on large
deformation behavior of electrically active materials and are referred to as Maxwell stresses.

Next, apply the facts that Au, = —u;'n} — u;n; where nj” and n; are the unit normal along the top and
bottom crack faces respectively pointing out from the solid material as illustrated in Fig. 2, and n = —n;
Then, expanding S; into top S} and bottom S_ surfaces, Eq. (3.4) can be rewritten as

vV Js

Se S&

c

i

— / (oen; )ou; dS — / b;idu;dV + / qopdV — / t;0u;dS + / wdpdS (3.8)
S 4 Vv St Sw
Eq. (3.8) represents the variation of the total electric enthalpy for a cracked solid/crack gap system. Next
consider the total electrical enthalpy © of only the cracked solid, but now with surface tractions # and ;-
and surface charge densities o' and o~ applied to the crack surfaces S; and S, respectively. The purpose is
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Fig. 2. Conventions for top and bottom crack surfaces S} and S_, the crack opening displacement Auw,, the potential drop
A¢p = ¢" — ¢, and the electric field within the crack gap E.. Also shown is the polar coordinate system attached to the crack tip which
will be used for the definition of the intensity factors K; and Kp for crack problems in linear piezoelectric solids.

to determine these tractions and charges such that the field solutions in the cracked solid in this second
system are identical to those in the first. The total electrical enthalpy of the cracked solid with these crack
face tractions and charges is

ﬁ(u,(,i)):/th—&—/ cu*(,i)*dS—b-/ a)’qlde—/ ll.*ui*dS—/ ti’ui’dS—/b,-uidV
v S Se s Ny v

c

+/qq§dV—/t,-u,—dS+/ wdS (3.9)
14 St So

Then, the variation of the total electrical enthalpy for this system is

652/(O'i/88ij—Di8Ei)dV+/
v

5

w+5¢+ds+/ a)’Bd)’dS—/ xfaude—/ 7 8u; dS
. S, Se

S,

c c c

14 14 St So

The strategy is now to choose the crack face surface tractions and charges, such that the displacement and
electrical potential fields that satisfy 8Q = 0 and 8Q = 0 are identical for both systems. This is accomplished
by setting 8Q = 3Q for arbitrary variations of the displacement and electrical potential fields. Hence, from
Egs. (3.8) and (3.10) the boundary conditions for the crack surfaces are obtained. Specifically, the results
for the energetically consistent crack face boundary conditions for a crack gap with an electrical enthalpy
density given by 4.(E.) with E. given by Eq. (3.5) are

dh,
w" =—-Dmn] =D, = ~ 4L on S (3.11)
dh,
o =-Din, =-D, = dE. on S, (3.12)
tr =aun = o = (he + E.De)n  on SS (3.13)
t; = on; =an; = (he+ EDc)n;  on S (3.14)

Egs. (3.11)—(3.14) represent the primary result for this section of the paper. It is very important to note that
these boundary conditions depend on the solution for the fields in the solid in a non-linear fashion due to
the definition of the electric field in the crack given by Eq. (3.5). In the following, more specific forms for
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these boundary conditions will be given for the special cases of perfect linear dielectric crack gap behavior
and an idealized model for electrical discharge within the crack gap.

3.1. The linear dielectric crack gap

Consider a crack gap with linear dielectric behavior described by Eq. (3.1) that has been studied by
numerous authors. Specifically, the electric field versus electric displacement behavior of the gap is assumed
to be

l)C = K()EC (315)

Here i is the dielectric constant of the material filling the crack gap and in most situations is identified as
the dielectric permittivity of free space. Then, the electrical enthalpy density of the crack gap for this case is

1

he = _EKOEg (3.16)
Finally, the crack boundary conditions can be stated as
b
DI =D, = —K0¢)+7¢_ on S and S (3.17)
uﬂ - ul’l
and
a+:a‘:lx ¢ -9 2 on S' and S (3.18)
nn nn 2 0 Lt; _ u; c c :

Here a convention is defined on the crack faces such that the subscript n represents the component normal
to the crack surfaces with the positive direction associated with the lower crack face normal. Specifically,
Dy =Dfn;, D, =D;n;,uy =uin;,u, =u;n;, o, =o;nn and o, =o;n;n; (no summation over n).
Note that for the standard crack configuration with the crack lying along the x;-axis and perpendicular to
the x,-axis, the subscript » in Egs. (3.17) and (3.18) can be replaced by a numeral 2. Also note that the
electric displacements and stresses denoted in these equations are those quantities in the solid at the crack
surface. Finally, Eq. (3.17) is the so-called “exact” boundary condition that has received considerable study
in the literature. However, aside from the work of Landis and McMeeking (2000), the non-zero traction

component of these boundary conditions has yet to be recognized or studied.

3.2. The non-linear electrically discharging crack gap

For materials that have dielectric constants much higher than that of the gap, the electric fields in the
crack gap can be magnified considerably over those in the solid. Under such circumstances it is likely that
the gap material will break down electrically by the mechanism of corona discharges. Here, a very simple
phenomenological model is proposed for such electrical discharge. It will be assumed that the crack gap will
behave in a linear dielectric fashion up to some critical electric field level for discharge E4. At this point the
electric displacement in the gap will be D, = iEy. It will be assumed that the crack gap cannot support
electric fields larger than E4, but that charge can be transferred between the crack faces such that the
effective electric displacement of the crack gap can increase without bound. In effect, at the critical level of
the electric field the gap becomes conducting. However, in this work we are interested in quasi-static
behavior and hence the conductance of the gap is not the issue, but the amount of charge transferred during
the discharge is. This model for discharge in the crack gap is analogous to the critical electric field model for
electrical breakdown in solids used by Zhang and Gao (2004).
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For this simple model for discharge, the electric displacement in the crack gap takes on the mathematical
form,

DC = K()Ec if |DC| < K()Ed (319)
D, = sgn(wqg)koEq + wq and E. =sgn(wq)Eq if |De| = KoEq4 (3.20)

Here wq represents the amount of charge per unit area transferred between the crack faces. Such a transfer
of charge is an irreversible process, but for the purposes of this work will be modeled as reversible. The
reversible and irreversible cases are indistinguishable from one another as long as no electrical unloading of
the crack gap occurs. Then, the electrical enthalpy density of the crack gap can be given as

1

hc = — EKQES if |DC| < K()Ed (321)
|
hc = — iKoEd if |DC| = K()Ed (322)
Then if |D.| < 1oE4 the boundary conditions along the crack faces can be given as
v
Df =D = —KOQZJ on SF and S (3.23)
u, —u,
and
1L (¢t =7\
ot =g = EK()(%) on SF and S_ (3.24)
If |D.| = koE4 the boundary conditions are
- =sgn(D.)Eq on S& and S, (3.25)
wr —u; ¢ ¢
D =D, = kosgn(De)Eq + wq on S and S (3.26)
and
+ - 1 2 1 2 + -
o, =0, =EqD| — EKOEd = Eq4|wd] +§ond on S and S (3.27)

These boundary conditions will be used to analyze a Griffith crack in a linear piezoelectric solid in Section 5
of this paper.

4. Evaluation of the crack tip energy release rate G, using the J-integral
Consider a straight through-thickness crack in a solid parallel to the x; direction as drawn in Fig. 3. The

J-integral Jr for a contour I" beginning on the bottom crack face, traveling around the crack tip and ending
on the top crack face is defined as

Jr = /(hm — ;g + DinEy)dT’ (4.1)
r

Here n; are the components of the unit vector normal to the contour I and pointing to the right. It should
be noted that there exist three other forms of the J-integral for electromechanical fracture, however the
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Fig. 3. The contours used for analyzing the relationship between the J-integral and the energy release rate. The crack is parallel to the
x; direction and the outer contour I intersects the top and bottom crack faces at the same x; position x/ .

form of Eq. (4.1) is the most useful for finite element computations and will be the only one treated here.
Note that Jr is equal to zero for a closed contour in a regular region of material containing no cracks or
other singularities. Furthermore, J; yields the amount of energy entering the contour per unit of virtual
advance of the contour and crack in the x; direction. For situations where the constitutive behavior of the
solid is reversible and the region between the crack faces cannot remove energy from the system, the energy
entering into the contour must be balanced by the energy flowing out through the crack tip. Therefore,
under such conditions, J is equal to the crack tip energy release rate Gy, and is independent of the path I'.
These path-independent conditions arise when the crack faces are traction free and the normal component
of electric displacement vanishes. However, for the crack model described in Section 3 the region between
the crack faces can store energy and hence the energy entering the contour I' is balanced by the
energy flowing out through both the crack tip and the crack faces. Under these conditions Jr is not equal to
Gip and Jr is not path-independent. However, a simple relationship between Jr and Gy, can still be
obtained.

Consider the closed contour illustrated in Fig. 3. The contour Iy, will be shrunken onto the crack tip
such that Ji;, = Gy;p. For the following derivation it will be required that the outer contour intersects the top
and bottom crack faces at the same x; position and this position will be called x| . Then, the facts that the
J-integral is zero around the closed contour and the closed contour must traverse Iy, in the clockwise
direction imply that

Jr+Ji+J—Jip=0. (4.2)

Eq. (4.2) can be expanded into

0 x{
Gﬁp:JmL/r (a;u§1+D§¢j)dx1 +/ (o1, + D5 ¢ ) dx, (4.3)
x| 0

Next applying the boundary conditions given by Egs. (3.11)—(3.14), using Au, =uj —u, and
A$p = ¢* — ¢, and interchanging the limits of integration of the second term yields

0
Gy = Jr + / [(he + EDo) Ausy + DeAd ] dy (4.4)
x|
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The integrand of the second term of Eq. (4.4) can be manipulated as follows

(he + ED) Az s + DA, = [(he + EcDo) Atz + DeAd], — (hey + EeiDe + EDey )tz — Doy A
A
- Kh - ¢DC> Aus + Dchs]
Au2

= (l’lCALQ)J - (h“] +EL-71DC)AM2 = (hCAuz)’l - (

A
- <hc.l +Ec,1Dc - ¢Dc<l>Au2 - DalAqs
) AU2 ) )

1

dh,
dE.

= (hcAuz)_’l — (—DCECJ +Ec‘1Dc)Au2 = (hcAuz)J (45)

E.i+ Ec,ch) Auy

Finally, the fact that the jumps in displacement and electric potential are zero at the crack tip and assuming
that the electrical enthalpy density at the tip is finite allows for the final result

Gip = Jr — hc(xlp)Auz(xlr) (4.6)

Hence, a full integral along the crack faces is not required to determine Gy,. The crack tip energy release
rate Gy, can be obtained by computing a single J-contour integration and then subtracting the electrical
enthalpy density of the crack gap times the crack opening displacement evaluated at the intersection of the
J-contour with the crack surfaces. It is important to note that J is dependent on the path I" and is not the
total energy release rate, and in general cannot be interpreted as the applied energy release rate either.

5. The Griffith crack in a poled linear piezoelectric solid

In this section the energetically consistent boundary conditions described in Section 3 will be applied to
the Griffith crack in a poled linear piezoelectric solid. For simplicity the material will be poled perpen-
dicular to the crack and only Mode I and D loadings will be applied to the sample. The extension to include
Mode II and III loadings is straightforward, but only acts to complicate the governing equations. First, the
solution for the fundamental Griffith crack problem with uniform charge and traction acting on the crack
surfaces will be reviewed and important features of the solution will be outlined. Then, this solution will be
applied to analyze the Griffith crack problem with applied loading in the far field and with the crack gap
able to store energy. It will be shown again that the boundary conditions derived in Section 3 prevail and
that the total energy release rate computed from energy variations of the entire system is equivalent to the
crack tip energy release rate with these boundary conditions. Finally, specific cases will be solved and
compared to ascertain the effects of the energetically consistent boundary conditions and especially the
effects of electrical discharge within the crack.

5.1. The fundamental Griffith crack solution

Here the solution for a Griffith crack of length 2a in a non-polar linear piezoelectric solid loaded by a
uniform opening traction ¢* and a uniform charge distribution D* on the crack faces as shown in Fig. 4 will
be outlined. Note that here the crack gap does not support any stress, electric field or electric displacement.
This solution has appeared in the literature many times and the details of its derivation will not be repeated
here. Instead, only the features of the solution that will be required for the subsequent analyses will be
given.

First the constitutive behavior of the solid material is given as

_ E
gij = Cijklgkl — ek,-jEk (51)
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Fig. 4. A schematic of the Griffith crack problem with electromechanical loading applied only to the crack faces. Features of the
solution for this problem in a linear piezoelectric solid with no energy stored in the crack gap are given in Egs. (5.4)—(5.13). The
intensity factors for this problem, Kj and Kp, are also listed.

D; = emen + K E; + P/ (5.2)

Here cfjk,, ey; and Kj; are the Cartesian components of the elastic stiffness at constant electric field, pie-
zoelectricity, and dielectric permittivity at constant strain tensors. The components of the remanent
polarization are given as P/. For the problem depicted in Fig. 4 the remanent polarization is zero, P = 0,
however the remanent polarization will be non-zero in later sections and analyses. Note that for ferro-
electric materials, remanent polarization is usually accompanied by remanent strain. However, Egs. (5.1)
and (5.2) remain valid for such a material with homogeneous remanent strain and remanent polarization
as long as the initial remanent strain state is taken as the reference datum for strains. A similar choice of
reference for the electric displacements is not valid and the remanent polarization must be included in
(5.2).

For the boundary value problem illustrated in Fig. 4, the stresses and electric displacements in the solid
must go to zero in the far field and must satisfy the following conditions on the crack faces.

Oy = 70'*, g1y = O, and D, =-D" onx; = 0, |X1| <a (53)

From the solution to this boundary value problem we will be interested in the crack opening displacement,
the electric potential drop across the crack, the total electrical enthalpy of the solid and the loading system,
the stress and electric displacement intensity factors and the crack tip energy release rate.

First, define the intensity factors K; and Kp such that very close to the crack tip g — Kj/ V2nmr and
D, — Kp/v/2nr. Then the values for K; and Kp, can be obtained from the solution by analyzing the fol-
lowing limits,

Ki = lim(on(r, 0 = 0)V2nr] = o*/na (5.4)
Kp = lim[Ds(r,0 = 0)V2nr| = D*\/na (5.5)

Here » and 0 represent a polar coordinate system centered on a crack tip as shown in Fig. 2. Then the crack
tip energy release rate for one of the crack tips can be given in terms of the intensity factors as
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Gip = Hi1 K} + 2H 2K Kp + HyK}, (5.6)

Here H,,, Hy; and H,, are components of the Irwin matrix, and these quantities depend only on the material
properties of the solid. Examples for the values of Hy,, Hi» and Hy, are given in Appendix A. Next, the crack
opening displacement and electric potential drop across the crack are given as

Auy(x)) = uy —u, =4(Hyo" + HaD")y/a*> — x3 (5.7)

Ap(x1) = ¢" — ¢~ = 4(H0" + HnD")y/a* — x7 (5.8)

Lastly, the electrical enthalpy of the solid Q4 and that of the loading system 2,45 can be given as
i

16 (m1 Aud + 21, AugAdy + N1 Ay (5.9)

Qgolid =

Qioads = — gaa*Auo — gaD*A% (5.10)

Here #,,, n,, and n,, are the components of the inverse of the Irwin matrix and Auy, and A¢, are the crack
opening displacement and electric potential drop across the crack at x; =0, i.e.

-1
M Mo Hy Hp
= 5.11
[’712 ”Izz} {le sz} (5.11)
Au() = Auz(xl = O) = 461(1‘[110'* —|—H12D*) (512)
A¢0 = A(f)(xl = O) = 4G(H120'* —|—H22D*) (513)

In the following subsection the results from this problem will be applied to the solution for a Griffith crack
in a polar linear piezoelectric solid with a crack gap that is able to support electric fields.

5.2. The energetically consistent solution to the Griffith crack problem

Consider the problem illustrated in Fig. 5a. The material contains a homogeneous remanent polarization
in the x, direction of magnitude P". It is important to note that practically all of the results on linear
piezoelectric fracture appearing in the literature implicitly assume that either the material is non-polar or
that material separation at the crack tip occurs in a very particular way. For example, if the material is
poled perpendicular to the crack tip as illustrated in Fig. Sa, it is assumed that an excess of positively
charged ions will separate onto the top crack face and the same excess of negative charge will separate onto
the bottom crack face. Such a separation of charges can be interpreted as a surface charge density of
magnitude s, where the subscript “s” denotes ‘“‘separation” or “segregation”. Most researchers have
tacitly assumed that w; is exactly equal to the remanent polarization P". Here, w; is identified as the excess
surface charge density due to material separation and will be allowed to take on arbitrary values. Next, the
specified applied loads in the far field consist of a uniaxial tensile stress and an electric displacement in the
x, direction of magnitudes ¢ and D. Note that the applied electric displacement D can be considered as
consisting of two parts, i.e. D = AD + P". Here AD represents the excess applied electric displacement over
the remanent polarization and is a result of the linear piezoelectric response of the material. Finally, the
crack gap is characterized by an electrical enthalpy density /..

Fig. 5Sb—d illustrate that this problem can be decomposed into three separate problems. Specifically, a
uniformly poled material with no crack under no applied loads, plus a non-polar material with no crack
subjected to uniform applied loads ¢ and AD, plus a non-polar material with a crack subjected to the
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(a) D* U* (b) P’*

Py
o=0
= D=P
E=0

Homogeneous fields

P}

(©) AD} o} ()

+ Homogeneous fields +

ADb 0|

Fig. 5. The superposition scheme used to solve the Griffith crack problem with electromechanical loading in the far field and a crack
gap that is able to store electrical energy. The original problem (a) allows for a linear piezoelectric and polarized solid, as well as a crack
surface charge density w, due to charge separation/segregation during material separation. Problems (b) and (c) involve only
homogeneous fields and hence the crack intensity factors and energy release rates are equivalent for problems (a) and (d).

uniform tractions and charge densities on the crack faces of magnitude o and D — w;. Then, since the first
two parts of the decomposed problem do not contain a crack, it can be argued that the intensity factors,
total energy release rate and crack tip energy release rate for the original problem (a) and the last problem
(d) are identical.

We now proceed to the total electrical enthalpy for the system illustrated in Fig. 5d.

Q= Qsolid + Qloads + chack

- % (11 A2 + 2115 AugAdy + 1y AdY) — gaoAuo _ ga(D — w)Ady + gaAuohc (5.14)

Here it should be noted that it has been assumed that the crack will open up into an ellipse of area
Acrack = malugy/2 and that the inclusion of the crack enthalpy density does not change the shape of either the
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crack opening displacement or electric potential drop distributions. Note, however, that the inclusion of the
crack enthalpy density can change the sizes of these distributions.

It is now assumed, in a fashion consistent with Eq. (2.12), that the solution to this problem causes the
total electrical enthalpy to be stationary. Eq. (5.14) has expanded the electrical enthalpy into a function of
two unknown scalar variables Auy and A¢,. Therefore, the following equations must be satisfied for the
solution

oQ i i s
A, :g(y,“Auo—i—nledbo) —56104—561% =0 (5.15)
oQ i 7 i
Sag, = g Moo +mnAdy) —5a(D— ) +7aD: =0 (5.16)

Along with the definition . = A, + E.D,, the following relationships have been used to derive the simplified
forms of Egs. (5.15) and (5.16).

oh  dh, OE, 0 [ Ad, Ad, 1

_ e 9 _p 9 (2% - _p 2P _pp 1
0Auy, dE, 0Auy 0Aug ( Auy ) Au} Auy (5-17)
oh.  dh. OF, d A, I

_ __p. _ _p L 5.18
oA, dE. A, oAd, ( At ) Ao (5.18)

In general, both ¢, and D, are non-linear functions of Au, and A¢, and hence Eqgs. (5.15) and (5.16)
represent a set of non-linear equations governing Au, and A¢,. Explicit solutions to these equations will be
detailed later in this subsection. However, (5.15) and (5.16) can be readily manipulated to demonstrate
some features of the solution.

First, by inverting the first terms of Eqgs. (5.15) and (5.16), the crack opening displacement and electric
potential drop across the crack can be shown to be

AMO :461[[‘[11(0'—0'0)+H12<D—(})S—DC)] (519)
A(}’)O = 461[[‘[12(0 — O'C) + sz(D — Wy — DC)] (520)

Note that this solution can be interpreted as the solution in the solid material with ¢* = ¢ — 6. and
D* =D — ws — D.. Hence, the intensity factors and the crack tip energy release rate are given as

Ki = (6 — 6.)Vma (5.21)
Kp = (D — o — D.)v/7a (5.22)
Gup = malH)\ (6 — 0.)” + 2Hp (0 — 60)(D — s — D.) + Hy(D — o, — D)’ (5.23)

Note that the intensity factors K; and Kp depend on the features of the energetically consistent boundary
conditions ¢, and D.. Furthermore, the levels of 6. and D, are dependent on K; and Kp as will be detailed
later in this section. A more detailed discussion of this coupling that arises from the energetically consistent
boundary conditions and its effects on the asymptotic crack tip fields in linear piezoelectric solids is included
in Appendix B.

Returning to the Griffith crack problem, by adding Eq. (5.15) multiplied by Au, with Eq. (5.16) mul-
tiplied by A¢,, it can be shown that

7711A”§ + 21, AupAdy + nzzA(j)é =4a(o — 0.)Aug + 4a(D — w5 — D.)A¢, (5.24)
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Then, implementing Egs. (5.19), (5.20) and (5.24), the equation for the total electrical enthalpy can be
manipulated as

Q= % (’711A”(2) + 21, AupAy + nzzA(j)g) — gaaAuo — ga(D — ws)Ady + gaAuohc

= ga[(a — 0.)Auy + 4a(D — w5 — D:)A¢,| — gaaAuo - ga(D — ws)Ad,

A
+ T ahuo he + ED + D20
2 Auy

= ga[(a — 0.)Auy + 4a(D — o5 — D:)Ad,| — gaaAuo — ga(D — ws)Ady + gaacAuo + gaDCAqSO
- _ga[(a — 6)Auy + (D — @y — D)AG,]
= —nd®[Hy, (0 — 0.)* + 2H3 (6 — 6¢)(D — w; — D.) 4+ Hayn (D — wy — D)’ (5.25)

Now, recognizing that the total energy release rate per unit of crack advance for one of the crack tips is
given by the opposite of the derivative of the electrical enthalpy with respect to the rotal crack length 2a,
Giotal Can be shown to be

Gtotal = —m = na[H“(a - O'C) + 2H12(O' — O'C)(D — Wg — Dc) +H22(D — Wy — Dc) } (526)
Therefore, it has now been shown that the total energy release rate is equal to the crack tip energy release
rate for this system with any arbitrary form of the electrical enthalpy density for the crack medium. For the
remainder of this paper both Gy, and Gy Will simply be referred to as the energy release rate G when
applying the energetically consistent boundary conditions. Also, note that this solution procedure applies
the weak form of the governing equations and that the crack face boundary conditions derived in Section 3
were not applied directly. However, if the strong form of the equations had been applied with the crack
boundary conditions of Section 3, the solution that would have been obtained would be identical to that
outlined above. We now proceed to a few specific examples.

First, Egs. (5.15) and (5.16) will be solved for the case where the electrical enthalpy density of the crack
medium is given by that described in Section 3.2. Specifically, the solution to Egs. (5.15) and (5.16) can be
obtained by the following procedure. If the electric field supported by the crack gap is less than the dis-
charge field Eg4, then the crack opening displacement is governed by the following cubic equation,

Au Au 2 Au Au Au
M — <’722 — - 4K0> — N — ['112 — - 4(D — ws)} (’722 — - 4’€0>
a a a a

a

A 2 A 2 A
+ ZKO |:’/Il2 o - 4(D - (Us):| — 40 (7/’22 ﬂ — 4K0> = 0 lf A;%
a a

U

< Eq (5.27)

After obtaining the relevant solution to Eq. (5.27), the potential drop across the crack is given by

4(D — wg)a — N Aug Ay

Agy = KK2A
d)o Foto 4K0a—1122Au0 Alxl()

if ' <Eq (5.28)

Fig. 6 is a contour plot of the solutions for the energy release rate (total or crack tip) predicted using the
energetically consistent boundary conditions assuming no electrical discharge for wide ranges of applied
stress ¢ and effective electric displacement D — ws. The material properties of the linear piezoelectric
material are characteristic of PZT-5H and are listed in Appendix A. The results of Fig. 6 are valid for either
polar or non-polar materials. However, for polar materials D = AD + P". It is common to present results
like those shown in Fig. 6 with the abscissa as electric field instead of D — w,. However, such a presentation
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Fig. 6. A contour plot of normalized energy release rate G (total or crack tip) for a remotely loaded Griffith crack versus applied stress
and applied effective electric displacement. Energetically consistent boundary conditions are applied to generate this solution. The
material is linear piezoelectric with properties characteristic of PZT-5H as given in Appendix A.

would yield different results for differing levels of remanent polarization and ws. If the applied electric field
is know instead of the electric displacement, then the electric displacement can be computed by manipu-
lating Egs. (5.1) and (5.2).

In order to obtain solutions for the energy release rate the solutions to Egs. (5.27) and (5.28) for Au, and
A¢, must be found first. Eq. (5.27) is a cubic equation for Au, and in general there will be three solutions to
this equation. However, only one of these roots represents the physical solution and its characteristics are
represented by shades of gray on Fig. 6. Within the white region of Fig. 6 solutions for Au, are positive, real
and lead to positive energy release rates. The upper dark gray sectors represent positive real solutions for
Auy but result in negative energy release rates. The most negative normalized level of the energy release rate
in these sectors within the range shown is G/Hjj6*ma ~ —0.24 which occurs at ¢~ 46 MPa and
D — w, ~ 0.04 C/m>. The lower dark gray sectors represent negative real solutions for Au, and hence the
crack is actually closed in these regions and the energy release rate should be interpreted to be zero. Finally,
within the light gray sectors the physically reasonable root to (5.27) is complex. There also exists another
non-physical root that is negative within this region. In either case the interpretation is that the crack
remains closed and the energy release rate is zero. The features of the solution for the energetically con-
sistent boundary conditions differ from those for the “exact’” and impermeable boundary conditions in that
the regions where negative energy release rates are physically realizable are considerably smaller than those
for the other models. A more detailed comparison to the impermeable and “exact” boundary condition
models is included in Fig. 7.

For comparison to the impermeable and “exact” boundary conditions appearing in the literature it will
be assumed that the discharge field is extremely large such that E4 — oo. The solution to the Griffith crack
problem assuming impermeable boundary conditions has both D, = 0 and ¢, = 0. Also, when computing
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Fig. 7. Energy release rates for a Griffith crack in a linear piezoelectric solid. The properties used for these calculations are those
reported for PZT-5H as listed in the Appendices A and B. These results are valid for both polar and non-polar materials.

the total energy release rate it is assumed that the crack gap does not store any energy such that the
last term of Eq. (5.14) is zero. In this case the crack opening, potential drop and energy release rates are
given as

Auy = 4alHy 6 + Hy>(D — ,)] ibmperdmeable
A¢O = 4a[H126 + H22(D — COS)] Orl:(;lit?rr); (529)
G"MP = Ggl;p = Gltgll]zl = na[H1162 + 2H126(D — COS) +H22(D — (1)5)2} co ons

Then, for the so-called “exact” boundary conditions D, = —k¢Ad,/Auy and g, = 0. Also, when analyzing

the total energy release rate with these boundary conditions, Eq. (5.14) with A, = —KoAqﬁé /2Au3 is used for
Q. Then, the crack opening, potential drop, crack tip and total energy release rates are

N220—112(D—ws)+n11 K0 — \/[ﬂlz(D—‘“s)—m 1K0—N220) — 4o 122=17)

Auo =4a

_ 4ac—ny Auy
Ay = ) boundary

2 2
(112 —17,) “exact”

(5.30)

tip Aug Aug

2 ..
exact — g |:H110'2 + 2H120'(D — s + Ko A%) + Hy (D — s + Ko A%) :| conditions

A 2

= Gopt = fro e

Fig. 7 plots results for the energy release rates for all three models. The values for the material properties
used to generate the results shown in Fig. 7 are characteristic of PZT-5H and are listed in Appendix A.
Note that the total and crack tip energy release rates are equal for the impermeable and energetically
consistent boundary conditions, but these two quantities differ for the “exact” boundary conditions.
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Furthermore, note that the crack tip energy release rates are computed from Eq. (5.6), whereas the total
energy release rates are computed from Gy = —0Q/0(2a). As for Fig. 6, the results of Fig. 7 are valid for
either polar or non-polar materials.

Fig. 7 illustrates a number of interesting features of this problem. First, for the modest applied stress
level of 10-MPa the difference between the crack tip energy release rate and the total energy release rate for
the “exact” boundary conditions that are so prevalent in the literature is significant over a wide range of
D — w,. Furthermore, the simple fact that these two quantities differ, regardless of the magnitude of the
difference, is unappealing from a theoretical perspective. It is also interesting to note that both the “exact”
and energetically consistent boundary conditions yield energy release rates significantly higher than the
energy release rate for the impermeable boundary conditions. This feature arises because the existence of
cracks in the presence of electric fields tends to be a high-energy state and hence electric fields tend to retard
crack growth and the energy released during crack growth. This retardation process is maximized for the
impermeable boundary conditions, but reduced for the “‘exact” and energetically consistent boundary
conditions where electric fields can permeate through the crack gap. Finally, the energy release rate for the
energetically consistent boundary conditions is higher than the total energy release rate for the “exact”
boundary conditions. This result may seem counterintuitive since in addition to allowing for electric fields
within the crack gap, the energetically consistent boundary conditions also include a closing traction on the
crack faces. One would expect that the closing traction should further reduce the energy release rate.
However, recall that the energetically consistent boundary conditions cause the electrical enthalpy to be
stationary, and this is equivalent to minimizing the potential energy IT of the system. Recall that for the
specific case of the Griffith crack problem Gy = —0Q/0(2a) = —0I1/0(2a) = —II/a. Therefore, the
solution that minimizes IT will maximize the total energy release rate.

One final observation from the solutions presented in Fig. 7 is that the electric field in the crack gap is
much larger than the level of electric field applied to the solid. This feature of the solution, along with
experimental observations of discharge in crack gaps, is the motivation to study the effects of electrical
discharge on the energy release rate for this system. In order to determine if (5.27) and (5.28) yield the valid
solution, the condition that the electric field in the crack gap is less than the discharge field, |A¢,/Aug| < Eq,
must be verified. If the solution to (5.27) and (5.28) yields |A¢,/Auy| > E4 then the solutions for the crack
opening displacement, potential drop, and level of discharge are given as

o — (D — wy)sgn(wq)Eq + KoES/2
My — 2112880 (wa)Eq + 1 E}

Auy = 4a if |og| > 0 (5.31)
o — (D — wy)sgn(wa)Eq + KoE3/2

Ay = —sgn(wq)EqAuy = —4asgn(wq)Ey
0 ) ( Ny — 2mpsgn(wa)Eq + 1y E3

if |wg| > 0 (5.32)

o — (D — wy)sgn(wa)Eq + KoE3/2
My — 2mpsgn(wa)Eq + 1y Ej

wg =D — o5 — koSgN(wq)Eq — (1112 — N2p8g0(w4)Eq) if |wgq| >0

(5.33)

Eq. (5.33) can be used to check the consistency for the choice of sgn(wg). If neither sgn(wq) =1 nor
sgn(wq) = —1 is consistent with Eq. (5.33) then this most likely implies the electric field in the gap is less
than the critical discharge field and Eqgs. (5.27) and (5.28) should be used for the solution. However, a
second scenario can arise if the magnitude of the discharge field is greater than either the positive or
negative critical levels defined by

, —Hyy, £ /HY, — Hi H-
Eort — 12 i2 1y (5.34)

Hy,
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If the discharge field is greater than the appropriate critical level then consistent solutions for the crack
opening and electric displacement within the crack cannot be obtained when the electric field within the
crack reaches the discharge level. The most likely physical interpretation is that the system is unstable when
the electric field within the crack attains the discharge level. For the remainder of this section it will be
assumed that the discharge field is less than both of the critical levels from (5.34).

Fig. 8 plots the results for the energy release rate versus the applied electric displacement for the
energetically consistent boundary conditions for an applied stress level of 20-MPa and various levels of the
discharge field E4. For a given level of E4 there exists a range of applied electric displacement values that do
not cause discharge, and the solution to the problem requires the solution of Egs. (5.27) and (5.28). As the
magnitude of the applied electric displacement is increased electrical discharge will eventually occur. Under
these conditions Egs. (5.31)—(5.33) provide the relevant solution and these solutions can be located on Fig.
8 as curves that branch off from the central non-discharging solution.

The most significant observation illustrated on Fig. 8 is that electric discharge tends to reduce the
retarding effects of electric field, thereby increasing the energy release rate. Also, note on Fig. 8 that
solutions for the energy release rate during electrical discharge drop smoothly and continuously to zero.
Egs. (5.31) and (5.33) yield interesting information about this behavior. For simplicity, consider positive
applied electric displacements that cause positive electric fields within the crack. One possible way to attain
an energy release rate of zero is if both the stress and electric displacement within the crack are equal to ¢
and D — w, respectively. If this is the case then the crack opening displacement must vanish. If Auy = 0,
Egs. (5.31) and (5.33) imply that the level of applied electric displacement that closes the crack, Dgjosure and
the corresponding level of transferred charge are

o 1
Dejosure — 5 = E_‘d + EKOEd (535)
G =20MPa G
2
E,=IMV/m Hyo i
E,=10MV/m

0.8 -
E, =100MV/m
d / 0.6

0.4 1

0.2 4

Non-discharging solution
o1

-4 -3 -2 -1 0 1 2 3 4

(O~ mS)/G\/_Hn/sz

Fig. 8. The effects of electrical discharge within the crack on the energy release rate.
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g 1
@4 = Dejosure — W5 — KoEq = E_‘d - EKOEd (536)
Then, it is readily shown that
1
D. = wg + KoEg = i + = K0Ed = Delosure — W5 (537)
Es 2
and
1 2 1 2 1 2
[ :DcEd —§K0Ed = G+§KOEd _EKOEd =0 (538)

Therefore, if the crack is closed then the stress and electric displacement within the gap are equal to the
associated applied levels. Finally, applying Eq. (5.23) or (5.26) it can be shown that G = 0 under these
conditions. Hence, the level of effective electric displacement where the energy release rate is zero corre-
sponds to the point where the crack is closed. Levels of effective electric displacement higher than the
closure level given in Eq. (5.35) only act to close the crack further. Therefore, since the crack cannot
physically be closed beyond Auy = 0, this electrical discharging crack model cannot lead to negative energy
release rates if the discharge field is less than the critical values given in Eq. (5.34).

6. Discussion

This work has been motivated primarily by McMeeking’s observation, McMeeking (2004), that the so-
called “exact” electrical boundary conditions that are prevalent in the literature give rise to a discrepancy
between the total and crack tip energy release rates in a cracked piezoelectric body. Such a discrepancy is
objectionable from a theoretical perspective. To address this problem, energetically consistent electro-
mechanical boundary conditions for cracks were derived in Section 3. These boundary conditions were
derived based on the following assumptions. (1) The energy of the cracked body can be computed using its
undeformed configuration. (2) When the crack opens electric fields can permeate the crack medium and
electrical energy can be stored within the crack. (3) The energy stored within the crack medium can be
computed from the deformed configuration of the cracked body. (4) Electric field components within the
crack medium parallel to the crack faces are negligible compared to the electric field normal to the crack.
Evidently, assumptions (1) and (3) are in contradiction with one another since the analysis of energies is
mixed between deformed and undeformed configurations. However, these assumptions are consistent with
those used for the “exact” boundary conditions. Furthermore, a proper resolution to this inconsistency
would require a full non-linear, large deformation kinematics analysis of the problem. Instead, in this work,
assumptions (1)—(4) are taken as a starting point and the energetically consistent crack boundary conditions
are derived by equating the weak statements of two boundary value problems; one which models the
volume of the crack gap explicitly and one that models the crack gap through the surface tractions and
charges that it applies to the cracked solid.

The primary results of this paper are the energetically consistent boundary conditions given by Egs.
(3.11)—(3.14). These boundary conditions imply that cracks in electromechanical materials not only sustain
electric field and electric displacement, but also apply mechanical traction to the surrounding material. This
feature of mechanical forces arising due to electrical effects is common in finite deformation analyses of
electromechanical materials and is usually termed a Maxwell stress. With these energetically consistent
boundary conditions, Section 4 was used to demonstrate that a small modification to the J-integral could be
used to compute the energy release rate for crack advance in a non-linear but reversible electromechanical
solid. The results of Sections 3 and 4 will be especially useful for the analysis of cracked piezoelectric bodies
with the finite element method. McMeeking (1999) and Gruebner et al. (2003) have already implemented
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the finite element method with the “exact” boundary conditions. Similar computations can readily be
performed with the new energetically consistent boundary conditions and the modified J-integral of Section
4 can be used to determine the energy release rate within these types of calculations. Finally, in Section 5,
the specific example of a Griffith crack in a poled linear piezoelectric solid was used to demonstrate that the
energetically consistent boundary conditions do in fact resolve the discrepancy between the crack tip and
total energy release rates. Furthermore, the effects of electrical discharge on the energy release rate was
ascertained and shown to reduce the retarding effects of electric fields on crack growth.
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Appendix A

The treatment of the Griffith crack problem outlined in Section 5 assumes that the components of the
Irwin matrix for the material are known. Irwin matrices are given in this appendix for PZT-5H as reported
by McMeeking (2004) and for materials with a special form of simplified piezoelectric properties as given by
Landis (2004).

For PZT-5H, McMeeking (2004) reports the following piezoelectric coefficients for a material that is
poled and transversely isotropic about the x;-axis.

cf, =126 GPa, c%,, =55 GPa, ck3; =53 GPa, cf,, =117 GPa, ¢4y, =353 GPa
e = —6.5C/m?,  ey3 =233 C/m?, e3 =17 C/m?
K, =151x10° C/Vm, «i =13x10"C/Vm

Then, the Irwin matrix for PZT-5H poled in the x, direction under plane strain conditions is

[H“ le] _ [0.803 x 107" m?/N  0.639 x 10~* m?/C

H12 H22 0.639 x 10_3 mz/C —2.289 x 107 Vm/C (Al)

Of course, this result for the Irwin matrix is applicable only to PZT-5H, and in order to obtain results for a
different material the associated Irwin matrix needs to be determined. This can be accomplished by fol-
lowing the procedure described by McMeeking (2004) among others. On the other hand, if the material
properties can be reasonably approximated with the following description due to Landis (2004) then the
Irwin matrix can be obtained in closed form.

Specifically, if the elastic compliance and dielectric permittivity tensors can be assumed to be isotropic
and the piezoelectric d coefficients satisfy transversely isotropic symmetries and dy;3 = (ds33 — da11)/2, then
the non-zero strain and electric displacement components due to electromechanical loading in the 1-3 plane
for a material poled in the x; direction are given as

1 v

v
=—=01| ——=0n — =033 +d31 E A2
€11 EGU Eo“zz E033 311£3 ( )

v 1 v
822:—5611+5622—Eﬂ3s+d311E3 (A3)
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y y 1
3=~ p 0N T pon +E033 + d333E3 (A.4)
1+4+v d3z3 — d
f3=—p—ont 3 5 LE (A.5)
Dy = (d333 — d311)013 + KE; (A.6)
Dy = ds11011 + ds1100 + d33033 + KE3 + P (A.7)

Here E and v are the isotropic Young’s modulus and Poisson’s ratio at constant electric field, k is the
isotropic dielectric permittivity at constant stress, and d33; and ds;33 are piezoelectric coefficients. Then, the
Irwin matrix for such a material poled in the x, direction in plane strain is

Hy Hyp| _ 4‘»%{ (dll_l) Th8 [7* (2?) ifiﬂ }T2 %DKTS) T+ 4{a—1)(14) | AL A8)
Hy Hyp IRy " . )
2, |\ &) Tg+4(a—1)(14v) | 2L -7 %

where ds3 = dss33, d31 = dsi1, dis = dsaz — dani,
@D - kr(l - V) +2(“r - 1)(1 + v)a @E = ks“s(l - V) +2(‘xr - 1)(1 + V)7

2Ed3, B 1
P ) and o, = &

k, =

For plane stress the Irwin matrix for this material is

2
[Hn Hu] B %’ L‘:"l - (%) }}g

Hy, Hpy

i ] (A9)

d ‘ _LJ
P 2K

1—ks"

where k, = %; and o, =
Appendix B

In this appendix the effects of the energetically consistent boundary conditions on the first two terms of
the asymptotic expansion for the solutions near crack tips in linear piezoelectric solids are outlined. It is
expected that the non-singular 7" terms will have an effect on the sizes and shapes of switching zones near
crack tips in non-linear ferroelectric materials. As in Section 5 simplicity is sought by considering only
mixed Modes I and D loading. The inclusion of Modes II and III would require additional singular K
terms, but the non-singular 7' terms would remain unchanged. Under mixed Mode I and Mode D the
Cartesian components of the stresses and electric displacements near a crack tip in a linear piezoelectric
solid can be expanded into the forms

K Kp .
o,(r,0) = \/Z_WOJ”(O) \/ﬁJD( )+ T + O(Vr) (B.1)
D) = —LD(0) + 2 D(0) + T + O(V7) (82)
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Here r and 0 are polar coordinates as illustrated in Fig. 2, and &},(0) = ¢%,(0), 6,,(0) = 67(0), D!(0) and
DP(0) are dimensionless functions of 0 that satisfy the following boundary conditions,

5(0=0)=D7(0=0) =1 (B.3)
(0 = 0) = 51,(0 = 0) = 57,(0 = 0) = 63, (0 = 0) = 533(0 = 0) = Dy(0 = 0) = 0 (B.4)
5, (0 = £71) = &1,(0 = £1) = 55,(0 = £n) = DY(0 = £n) = 0 (B.5)
65,0 = 1) = 62(0 = £71) = 65 (0 = £n) = D5(0 = +n) = 0 (B.6)

Notice that the boundary conditions represented by Egs. (B.5) and (B.6) are the same as those associated
with the impermeable crack model. Hence, the impermeable crack boundary conditions are valid for the
singular K terms, and standard methods can be applied to determine the dimensionless stress and electric
displacement functions, e.g. Suo et al. (1992).

The direct effects of the energetically consistent boundary conditions first arise in the non-singular 7'
terms. Near the crack tip the jumps in displacement and electric potential across the crack are given as

Al/lz = uz(l", 0 = ﬂ?) - uz(l", 0 = —71?) = 4\/%(1‘1]11(1 +H12KD) + 0(}’3/2) (B7)
Ap=d(r,0 =m) = ¢(r,0 = —1) = 4\/%(1{12& + HnKp) + O(r?) (B.8)

where the H terms are the components of the Irwin matrix as given in Appendix A. Then the electric field in
the crack gap is given as
A¢ _ HuKi+ HipKp

E =29 _ _ZuR T IRAD
¢ Ausy Hj»K; + H»Kp

+ O(r) (B.9)

which is independent of r to leading order near the crack tip. This implies that the electric displacement and
the stress acting through the crack gap are constant to leading order near the crack tip as well and are given
by

dh,

C

D, = — and o¢.=h, + E.D, (B.10)
Then, in order to satisfy the energetically consistent boundary conditions, the 7 terms must satisfy the
conditions

=0, TP=D, and TLh=T5=Ts="TH=0 (B.11)

The remaining terms 77;, 75, T5 = Ty, TP and 77 take on values as determined from the geometry of the
cracked body and the applied electromechanical loading.

Finally, it is important to note that there is a coupling between the singular K terms and the non-singular
T terms when applying the energetically consistent boundary conditions. Specifically, the dependence of 77,
and 7P on K; and Kp is demonstrated by Egs. (B.9)—(B.11), whereas K; and Kp depend on 73, and 77 (i.e. o,
and D.) through the details of the boundary value problem as illustrated for the Griffith crack problem in
Eqgs. (5.21) and (5.22).
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